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A SURVEY OF EXISTING SATELLITES 

IN RESONANT ORBITS FOR GEODETIC PURPOSES 

Carl A. Wagner 

ABSTRACT 

The elements of the orbits of about 1000 ear th  satellites (as of April 1968) 

have been examined. The object was to determine those in resonance o r  near 

resonance with the ear th 's  longitude gravity field which have the greatest  prom- 

ise for future satellite geodesy. Thirty-six resonant objects orbiting from one 

to fifteen t imes a day have been selected as having the greatest  promise for im- 

proving knowledge of the geopotnetial. The main criterion used for the selection 

within each resonant frequency was the estimated strength of the strongest res- 

onant perturbation based on a 1966 gravity field solution. By far the most fa- 

vorable geodetic objects appear to be those with orbital frequencies of two rev- 

olutions a day. Among these are five objects which should be suffering resonant 

perturbzticns of from about 7000 to  400,000 kilometers along track, with periods 

of the order  of years .  But a large number of other quite strong resonant orbits 

with a good range of inclinations a r e  also found to exist at frequencies of twelve 

and fourteen revolutions a day. Among the objects of 12 revs./day orbital f re-  

quency are five which should be suffering resonant perturbations of from about 

0.5 to  10 kilometers along track, with periods of from 15 to 100days. Among the 

objects of 14 revs./day orbital frequency are five which should be suffering 

resonant perturbations of f rom 0.7 t o  80 kilometers along track with periods of 

i ~ u i i i  LI LU L ~ U  ways. As: tar as car1 be deiei.iiiiiieii iioiie uf tile iiiiriy-six objects 

h a s  yet been used to determinelongitude components of the ear th 's  gravity field. 

A scarcity of good resonant orbits is noted at four,  five, six, seven, nine and ten 

revolutions a day. 

I _^^_^^ n, L -  0-n - l - - - -  
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A SURVEY OF EXISTING SATELLITES 

I N  RESONANT ORBITS FOR GEODETIC PURPOSES 

d 

INTRODUCTION 

The stimulus for this survey was the intriguing question; of all the thousand 

o r  so existing satellite orbits, which of those in near resonance with the ear th 's  

rotation ra te  would be most useful for future geodetic investigations ? More 

precisely, this extensive survey was undertaken once the ability was found to 

quickly calculate the so-called resonant beat period for near resonant (or com- 

1 2 
mensurable) orbits from widely published mean element specifications. 

While it is generally t rue that the most useful resonant orbits should be those 

with long beat periods, to allow for greater amplification of the relevant gravity 

effects, the essential tracking criterion is the actual perturbation itself. To 

assess the relative usefulness of existing orbits for future resonant satellite 

geodesy over the entire resonance spectrum, one would like an efficient method 

to estimate both beat period and perturbation amplitude. 

3 
Fortunately, Kaula's expansion of the geopotential enables one to  calculate 

these off resonant or  beat period perturbations quite readily from a straight- 

forward first order  integration of the Lagrange planetary equations. Such an 

integration will show the off resonant perturbation, in mean anomaly for  example, 

to  be sinusoidal for each relevant harmonic component, with a frequency that 

depends on the distance of the orbits mean motion from exact resonance for that 

component. The maximum mean anomaly acceleration, due to a particular 

1 



harmonic component, is a function of the semimajor axis, inclination and ec- 

centricity of the orbit. Graphs of these component accelerations for  the resonance 

spectrum with mean motions of f rom one to  fifteen t imes a day, have already 

been tabulated. 

as calculated in Reference 2, one can quickly estimate the magnitudes of the 

. 
4 

Using these graphs and the estimation of resonant beat period 

linear forced oscillations in the along track position due to  longitude t e r m s  in 

the geopotential. 

Since 1965, quite a few low altitude geodetic satellites have been studied 

5,6,7,8,9 In ad- whose orbits have off resonant beat periods of from 2 to  10 days. 

dition, two high altitude 12 hour orbits have been analyzed whose dominant near 

resonance beat periods have been between 100 and 150 days. lo'll Although there 

is no sharp division between the deep resonance and libration regimes (with 

pendulum characteristics) and the near o r  off resonance regimes which are char- 

acterized by linear perturbations, the simple beat period does provide a rough 

guide to these regimes. Off resonance, where the assumptions of simple forced 

linear oscillations are adequate, appears limited to  orbi ts  with beat periods less 

than about 100 days. Between beat periods of about 100 to  perhaps 400 days, the 

orbit should be classified as near o r  deeply resonant whose perturbations are 

characteristic of a slowly circulating pendulum. Orbits with indicated beat 

periods over 400 days are probably in libration-like regimes.  These resonant 

12 13 
and Gedeon. regime distinctions are examined in greater detail by Garfinkel 

Recently there has  been published a list of about 50 objects in near resonant 
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orbits which includes those previously tracked for geodetic purposes as well as 

a number of new candidates for such tracking (Strange, et  al. 

are found still more objects of geodetic interest  in orbits with off resonant beat 

periods greater  than 50 days. This report is designed to classify all of these, 

and other newly found near resonant orbits, in t e rms  of the single important 

14 2 
). In Wagner 

tracking cr i ter ia ;  the likely amplitude of the resonance perturbation due to  the 

ear th ' s  longitude dependent gravity forces. This classification will show that 

there  are far many more interesting near resonant objects existing that have 

never been tracked for geodetic purposes than have. 

ANALYSIS 

1 5  
It is known (from Gedeon, et a l .  ) that for a perfectly resonant (or com- 

mensurable orbit) satellite, the acceleration of the mean anomaly due to a dis- 

3 
turbing longitude harmonic component Vdmpq (in Kaula's form of the geopotential ) 

is given by: 

where s is the rational fraction number of revolutions the commensurate orbit 

satellite makes in a day, p is the earth 's  Gaussian gravity constant, ae is the 

mean equatorial radius of the earth, a is the orbit semimajor axis, Jtm is the 

unnormalized associated Legendre gravity harmonic coefficient of degree 4 and 

o rde r  (or frequency) m(m # 0), Ftmp and Gt, are inclination and eccentricity 

3 



3 
functions (see Kaula ), and; 

* t m P q  
( 4 - 2 p - t q ) M  -t (8- 2p)w + m(.Q-Oe -A$;) 

with the restrictions on the 4, m, p, q integral indeces that: 

4 - 2 p + q  = I d s  

o l p l 4 ,  

and 

In Equation 2;  w,M and 0 are the Keplerian orbit  elements, argument of perigee,  

mean anomaly and right ascension of the ascending node, Be is the hour angle of 

the Greenwich Meridian, and At, is the phase angle of the spherical harmonic of 

gravity whose amplitude is Jxm. 
For near resonant orbits, Equation 1, which provides the pendulum analogy 

for the libration regime, while not exact, is a sufficiently good approximation of 

the disturbing acceleration to be useful fo r  these resonant orbit  classification 

purposes. The effects in the off resonant regime which it descr ibes  may be 

thought of a s  the echo of the very long period librational resonance effects in the 

same sense that the circulating pendulum is a n  echo of the behavior of the li- 

brating pendulum. When the off resonant beat period approaches one day, these 

resonant echo effects will be competing with another series of ordinary (or 

4 



non-resonant) longitude harmonic effects on the orbit of about one day period 

(due to the ear th 's  rotation). 

With the additional assumption that in the off or  near resonance regime the 

), and the orbit parameters  I (in- 
10,2 

longitude drift rates @ (or x, as in Wagner 

clination), e (eccentricity) and a (semimajor axis) on the right hand side of (1) 

do not change significantly, this equation can be written as :  

where ; 

Equation 4 is the acceleration in a simple harmonic oscillator. The longitude 

rate Y is given by 

Y = ( { - 2 p t q ) ( M t & )  + m ( h - h e )  - Lq . 

Using the resonance index selector 4, - 2p f q = d s ,  these rates  become: 

(Yfor near  resonance will be close to zero.) In most cases ,  the last t e r m  on the 

right can be neglected. Then, these longitude rates a r e  identical to m t imes the 

mean orbital longitude rate (i) used in Wagner to derive the dominant beat 
2 
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periods for the entire resonance spectrum. In a future development of this in- 

vestigation, t h e  neglected perigee rate t e rm wil l  be included to  examine the fine 

structure of the spectrum for completeness. 

In a harmonic oscillation of frequency Y and amplitude A, the amplitude of 

the acceleration (C in this problem) is simply C -- ( Y ) 2  A. Thus A - C/(Y)2. 

In t e r m s  of the oscillation period T, A CT2/( 27/)2, since kr ~ 277 radians. 

4 
In Douglas and Palmiter, values of C (maximum resonant accelerations of 

the mean anomaly) are plotted for  the dominant resonance spectrum from S = 1 

to 15 revolutions per day and I = 0" to 90" inclinations. The orbit eccentricity 

is fixed for each resonant period at the maximum allowable to  yield a drag  free 

perigee of about 750 km. In addition, the C values are based on a 1966 (combined 

satellite-surface gravimetric) geoid (Kaula 

beyond J 1 2 ,  12 by a rule of thumb that apparently underestimates some of the 

resonant coefficients a t  S = 13, 14 and 15 by as much as  an order  of magnitude. 

While the graphs of C values in Douglas and Palmiter a r e  not as realist ic as to 

actual orbit or gravity parameters  as they might be, they do provide a basis for 

a reasonable first cut estimation of the perturbation amplitudes which can be 

expected on existing satellite orbits. The difference in eccentricity between the 

graphs and the existing orbits is never very large.  Ln any case ,  the extended 

fine spectrum study wi l l  calculate exact C values based on the actual orbit pa- 

rameters ,  a , c  and I. 

16 
) which estimates Jt, coefficients 

4 

~ 
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4 
In Douglas and Palmiter, the C values are in units of degrees/day2. In 

2 
Wagner, the off resonant beat periods BPR are calculated (for assumed dominant 

effects where m = s) from the abbreviated elements in  the Satellite Situation 

1 
Reports, in  units of days. Therefore, the amplitudes of the off resonant mean 

anomaly perturbations, with C and BP, in deg./day2 and days are: 

radians. Estimating the mean along track perturbation amplitude ( m )  as aA, 

this amplitude is given as 

(5) C(BPR) (6378)a - 
& ? =  72m - 2.82C(BP,)2 a , km. 

with C in deg/day 2, BP, in days and, a, the near resonant semimajor axis, in 

ear th  radii. 

USE OF THE GRAPHS 

2 
Figures 1 and 2 (extended from thosLin Wagner ) in conjunction with C 

values from Equation 4a and use of Equation 5 enable one to quickly calculate the 

off resonant perturbations on any satellite f rom a wide variety of given elements. 

Alternately, with beat period and C values, Figure 4 may be used instead of 

Equation 5. 

1 
For  example, with mean period data f rom the Satellite Situation Reports, 

the resonant period may be estimated from Figure 1 as a function of the orbit 

7 



inclination and eccentricity. Mean perigee and apogee heights, a lso listed in 

these reports,  can be used in Figure 3 to find the orbit eccentricity. The off 

resonant period distance (resonant period minus actual period) is then used to 

find the beat period in Figure 2. The beat period is then combined with an esti-  

mate of the maximum Mtmpq r e s o n a n t  o r  C value from Equation 4a or  appropriate 

graphs, to  find the dominant resonant along track perturbation from Equation 5 

o r  Figure 4. 

If the "mean" mean motion 5 (revs./day) is given instead of the period, as 

it is in the Smithsonian Astrophysical Observatory Catalogues, this may be con- 

verted to  the mean period in minutes: P = 1440fi. Or ,  alternately, the graphs 

in Figure 1 give the resonant mean motion using the determining line and the 

rightmost scale. The actual mean period and the actual "mean" mean motion 

(according to the formula above) a r e  in horizontal alignment between the left and 

rightmost scales in Figure 1. Thus, if the off resonant period distance is desired,  

the resonant period is determined in  the usual way from Figure 1 and the actual 

mean period is found by the simple horizontal alignment of the left and rightmost 

scales. 

If mean semimajor axis 5 is given instead of period, the resonant semimajor 

axis  may be found from the determining l ines and the inner right hand scales in 

Figure 1. Then the off resonant period distance can be approximated upon dif- 

ferentiating Kepler's period law: AP = 3P A d 2 a  (see Figure 5). 

8 



Having found the off resonant semimajor axis distance A a  from Figure 1, 

Figure 5 may be used to find the off resonant period distances for near com- 

mensurable orbits from S = 1 to 15 revolutions per day. The factors 3P/2a for 

these commensurabilities were taken from Figure 1 for exactly resonant orbits 

at I = 40" and e = 0. For actual near commensurable orbits, these factors 

will be adequately close to  those given in Figure 5. 

1 

. 

APPLICATION 

A s  an example of the near resonance perturbation calculation for an exist- 

ing satellite, there is the satellite 1961-15A (OM1 1) which has  already been used 

for  geodetic purposes and thus serves as  a good calibration object. In the Sat- 

ellite Situation Report of April 15, 1968,l the period of this 14 revs/day object 

(Transit 4A) is listed as 103.8 minutes. The orbit inclination is 66.8". From 

Figure 1, the exact resonant period for this object is 101.85 minutes. The res- 

onant period distance (&') is therefore 1.95 minutes. From Figure 2,  the in- 

dicated beat period is 3.9 days. It should be noted that the actual orbit period 

is greater than that for exact resonance. Therefore, due to drag, Transit 4A will 

show a slowly lengthening beat period and greater resonance perturbations as 

time goes on. In 1962, the theoretical beat period was  3.7 days according to 

A i ~ d e r l e . ~  Since it is a q = 0 harmonic t e rm which is dominant on this nearly 

circular orbit satellite, the beat period calculated from Figures 1 and 2 is exact. 

Where the q index of the dominant harmonic t e rm is not zero and is appreciable, 

9 



the dominant beat period will be somewhat different than that estimated from 

Figures 1 and 2. (%e Wagner ). 
2 

5 
According to Anderle, in 1962 the resonance perturbations on this object 

(1961-15A) were about 100 meters  in amplitude (due to  J 15, 14 ). Using a beat 

period of 3.9 days and a dominant C value of 0.67 x deg/day2 for the effect 

of the dominant V 1 5 ,  14, 7 , 0  geopotential t e rm,  as found in Douglas and Palmiter, 

Equation 5 gives: 

4 

35 meters  &15, 14,7,0 

for  1961-15A. A large part  of the discrepancy between this calculated perturba- 

tion and the actually observed one is due to  the fact that the C value graphs in 

Douglas and Palmiter are based on a rule of thumb estimation of Jtm for 8, m 
4 

indeces above 12 12 which gives J 15, 14 about 4.4 t imes smaller than J 1 5 ,  14 
9 

5 
measured by Anderle from this  object. In the extended, fine spectrum study of 

these existing orbits, a more realistic geoid with all coefficients through J 1 5 ,  l5 

will be used. 

RESONANT SATELLITE SURVEY RESULTS 

A total of 85 objects in near resonant orb i t s  have been examined in detail 

according t o  their mean orbital elements (period, inclination, apogee and perigee 

heights) as listed in the April 15, 1968 Satellite Situation Report of the Goddard 

Space Flight Center's Operation Control Center 

have been used, in conjunction with Figures 1, 2, and 3 of th i s  report ,  t o  estimate 

1 (see Table 1). These elements 

C 

the off resonant beat periods for the objects. 
10 



Using previously published re sonant acceleration data in Douglas and ~ 

I 

4 16 
Palmiter based on a Geoid through J 1 2 ,  12 by Kaula, in conjunction with the 

* estimates of the off resonant beat periods, amplitudes of along track perturba- 

tions due to  the dominant resonant harmonic effects have also been calculated. 

These calculations calibrate ra ther  well with actual near resonant perturbations 

measured from geodetic satellite orbits. All existing near  resonant geodetic 

satellite orbits (as of April 1968) studied by Gaposchkin (1966),' Yionoulis (1965),7 

10 Anderle (1965),5 Guier and Newton (1965),6 Kaula (1968)'~ and Wagner (1968) 

have been examined and evaluated in this manner for  their  principal off o r  near  

resonant effects. In addition all the objects listed in Strange, et al., as being 

in reasonably good resonant orbits for  geodetic purposes, have also been eval- 

14 

uated. Some of these include those already tracked and analyzed for geodetic 

effects. 

In addition to  the objects listed in the above sources, about 30 new ones have 

1 
been found in the Satellite Situation Report which should show geodetically sig- 

nificant near resonant perturbations when their  orbits are analyzed for these 

effects, 

The list of all the evaluated objects is presented in Table 1. It should not 

be considered exhaustive of the interesting near  resonant orbits that exist about 

the ear th .  The selectien ef r r ~ e w r r r  ebjects was based prim-arily o-n- fi-n-ding the 

orbi ts  with largest estimated perturbations with respect to each of the one day 

commensurabilities from S = 1 to 15 revs/day. Where more than one object 

11 



w a s  found in essentially the same orbit, the orbit closest to  resonance w a s  

chosen for  evaluation. Since perturbation magnitude was the chief cr i ter ia  

within each commensurability, interesting near resonant objects of smaller  per-  

turbation but varied inclination and eccentricity (important to satellite geodesy) 

may have been missed in this survey. It should also be kept in mind that these 

examined orbits are only for  Apri l  1968, and that due t o  air drag, luni-solar 

gravity, radiation pressure o r  even controlled o r  uncontrolled satellite outgassing, 

many of the listed orbits and their  resonance characterist ics will change ap- 

preciably with time. In the past there  may have been other listed or  unlisted 

satellites which suffered even more  interesting and unexamined geodetic effects 

than those checked in Column 0 of Table 1. In the future the situation may change 

also for some of the listed objects here.  To aid in  follow up and follow back in- 

vestigations of these objects, the beat period (Column @ in Table 1) has  a + sign 

superscript i f  the orbits mean distance is above the exact resonant mean dis- 

tance, and a - sign if  it is below. For  the low perigee, near  c i rcular  orbit sat- 

ellites, the higher energy orbits should show stronger resonance effects in the 

future. Similarly, the lower energy ones (with respect to exact resonance) should 

have shown stronger effects in the past. 

w 

Up to  five “new” (presumably unanalyzed) near  resonant orbi ts  with the 

strongest estimated perturbations for  each commensurability have been selected 

from Table 1 as worthy of further tracking investigation for geodetic purposes. 

They are the 1’ checked (in Column (IJ ) objects, and their  g ross  perturbation 

12  



characterist ics for resonant satellite geodesy are summarized in the abstract. 

The sensitive, resonant, harmonics on these (and the other) listed orbits are 

found in Column @ of Table 1. They represent the harmonics which may cause 

a perturbation of at least 10% of the dominant perturbation in Column @. Where 

the orbit inclination is much over go", no good estimate of M,,, from the graphs 

in Douglas and Palmiter is available. The perturbations for these orbits (with 

a ? question mark in Columns @ and 0) are estimated at 1/2 the maximum 

4 

perturbation in the range 0 < I 90". More  information on the physical charac- 

teristics and tracking capabilities of these objects are to be found in papers  by 

King-Hele and h is  associates. 18 

The only resonant orbits not surveyed here  are the maneuverable 24 hour 

communications satellites in NASA's Syncom and ATS series, and COMSAT's 

Intelsat series; 1963 31A (SYNCOM 2), 1964 47A (SYNCOM 3),  1966 l l O A  (ATS l), 

1967 l l l A  (ATS 3) ,  1965 28A (Early Bird), 1967 01A (Intelsat 2 F-2), 1967 26A 

(Intelsat 2 F-3) and 1967 94A (Intelsat 2 F-4). The orbits of these satellites are 

generally in the libratory regime of deep resonance and are presently being 

1 9  
studied in detail for geodetic effects. 

Summarizing, the resul ts  of a survey of about 1000 existing satellite orbi ts  

of the ear th  fo r  application to  resonant satellite geodesy show: 

1. Thirty-six nrbits (previously unanalyzed for the long te rm amplified 

along t rack oscillations of resonance) whose detailed tracking analysis 

should contribute significantly to the refinement of knowledge of the ear th 's  

longitude gravity field. 

13 



2. Of the thirty-six new orbits, the most favorable for satellite geodesy are 

probably five 12 hour orbits (2 revs/day) of communications-satellites 

of the United States (INTELSAT 2 F-1) and the U.S.S.R. (in the Molniya 

and Cosmos series). These orbits should be suffering along track per- 

turbations of from 7000 t o  400,000 kilometers with periods of the order 

of a year and more. Study of these perturbations should considerably 

improve knowledge of low degree and order longitude coefficients in the 

geopotential . 
3. A good variety of inclinations and eccentricities for fairly strong new 

resonant orbits exist near commensurabilities of 12 and 14 revolutions 

per day. About 10 of these orbits should be suffering resonant pertur- 

bations of from 0.5 to 80 kilometers along track with periods of from 15 

to 250 days. Study of these should greatly improve the definition of many 

specific gravity harmonics of order 12 and 14. 

4. A scarcity of good resonant orbits fo r  satellite geodesy exists at com- 

mensurabilities of 4,  5,  6 ,  7 ,  9 and 10 revolutions per  day. It is hoped 

that in the future, some space missions close to  these commensurabilities 

can be altered to bring them even closer  so as to  improve their useful- 

ness as measuring probes of the ear th 's  gravity field. 
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Figure 1-Resonant periods, semimajor axes and mean motions 
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Figure 4-Off resonant along track perturbation from beat period and maximum 
mean anomaly acceleration. 
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TABLE 1 
SURVEY OF EXISTMG N W  RESONAWI EARTH SATELLITE O R m  

- 

IEAN 
mON 
- 

I&) - 
15 
15 
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I4 
I4 
I4 
I4 
14 
14 
14 
I4 
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I4 
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I1 
I1 
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I4 
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I4 
I4 
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I4 
I4 
I4 
I4 
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13 
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I3 
13 
13 
13 
13 
12 
12 
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12 
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11 
11 
10 
10 
10 
9 
9 
9 
9 
9 
9 
9 
8 
8 
8 
8 
7 
8 
5 
1 
3 
1 
1 
1 
1 
2 
a 
a 
a 
2 
2 
1 
1 - 

- 
ERlOD 

P 

wm.) 
- 
95.1 
95.1 
95.3 

101.8 
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1m.r 
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im.8 
im.9 
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1M.I 
1W.I 
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113.1 
101.3 
1m.9 
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110.1 
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130.9 
129.6 
143.1 
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145.3 
157.7 
161.4 
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161.9 
157.0 
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155.2 
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309.7 
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1.2511 
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39.4 
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91.1 
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814 
MI 

940 
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U.+ 

250,- 
150.+ 
147.- 
30 
21.- 
47.- 
50.- 
50.' 
16.5' 
12: 
25: 
16.- 
5.1' 
5.2' 
5.0- 
S.9+ 
3.9+ 
1.8+ 
4.6+ 
3.6+ 

8 9  
3.0' 

<3.+  
11.- 
<3.* 

7. -  
12.- 
9.5' 
8.* 
7.* 

'3.- 
3.3f 
1.8' 
5.6- 
2.6. 

11.5' 
4.+ 
8.- 

E l . +  
67: 
15.- 
1w: 
29- 
6: 
so: 
1.v 

13.5- 
3.3' 
3 . v  
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10.1 
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9. - 
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7: 

10.- 
2.8* 
5.- 
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ESONANT PERTURBATIONS 
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-;-.DEEPLY 

mmcm SAT. POR ommma: SAO 
m L y m  1 
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W I - 4  

-. Y 

ECHO 1:- BALUOON. DECAYED, HAY 1988 

GREB 
-; SA0 

M S l T  4 A  SAO, NWL. Y, K, APL 
WUN-SR-3; SA0 

EXPLDRER 10 
EXPLORER 11 
EXPLORER 22; SAO, K 
0M)Z.SAO 

MADEME 1 
EXPLORwl 

CE06 2 ROCWT 

EXPLORER 19: SA0 
SN-39, APL 
ANNA 18; SAO. NWL, 15 APL 
-; SAO, APL, NWL. Y 
DIADEME 2 
EXPLORER 8 
EXPL~RER n 

TmOB 9 
D 1 A  

ALOUETTE 2 

EXPLORER 29 GBOB 11: SAO. K 
ECHO 1 ROCI(BT SAO. K 

EGA9 5 
-; SAO: DEEPLY R-ANT 

VANGUARD 3: SA0 

RELAY 1 
W1-14 
TELSTAR 2 


